

Statement of Verification

BREG EN EPD No.: 000601

Issue 01

BRE/Global

This is to verify that the

Environmental Product Declaration provided by:

Arab Steel Co (ASCO)

is in accordance with the requirements of:

EN 15804:2012+A2:2019

and

BRE Global Scheme Document SD207

This declaration is for:

Carbon steel feedstock billets manufactured from secondary material (steel scrap) and direct reduced iron (DRI)

Company Address

Arab Steel Co (ASCO) 2nd Industrial City Dammam Saudi Arabia

13 June 2024

Date of First Issue

Signed for BRE Global Ltd

Emma Baker

Operator

13 June 2024

Date of this Issue

12 June 2027

Expiry Date

This Statement of Verification is issued subject to terms and conditions (for details visit www.greenbooklive.com/terms

To check the validity of this statement of verification please, visit www.greenbooklive.com/check or contact us.

BRE Global Ltd., Garston, Watford WD25 9XX.

T: +44 (0)333 321 8811 F: +44 (0)1923 664603 E: Enguiries@breglobal.com

Environmental Product Declaration

EPD Number: 000601

General Information

EPD Programme Operator	Applicable Product Category Rules
BRE Global Watford, Herts WD25 9XX United Kingdom	BRE 2023 Product Category Rules (PN 514 Rev 3.1) for Type III environmental product declaration of construction products to EN 15804:2012+A2:2019.

Commissioner of LCA study	LCA consultant/Tool
CARES Pembroke House 21 Pembroke Road Sevenoaks Kent, TN13 1XR UK www.carescertification.com	CARES EPD Tool SPHERA SOLUTIONS UK LIMITED The Innovation Centre Warwick Technology Park Gallows Hill, Warwick Warwickshire CV34 6UW www.sphera.com

Declared/Functional Unit	Applicability/Coverage
The declared unit is 1 tonne of carbon steel feedstock billets manufactured from secondary material (steel scrap) and direct reduced iron (DRI).	Manufacturer-specific product.

EPD Type	Background database
Cradle to Gate with Module C and D and Options	GaBi

Demonstration of Verification

CEN standard EN 15804 serves as the core PCR $^{\rm a}$

Independent verification of the declaration and data according to EN ISO 14025:2010

□ Internal
□ External

(Where appropriate b)Third party verifier: Pat Hermon

- a: Product category rules
- b: Optional for business-to-business communication; mandatory for business-to-consumer communication (see EN ISO 14025:2010, 9.4)

Comparability

Environmental product declarations from different programmes may not be comparable if not compliant with EN 15804:2012+A2:2019. Comparability is further dependent on the specific product category rules, system boundaries and allocations, and background data sources. See Clause 5.3 of EN 15804:2012+A2:2019 for further guidance

Information modules covered

	Produc	t	Const	ruction				Use sta	ge				End-	of-life		Benefits and loads beyond
	Todac		Const	ruotion	Rel	ated to	the bui	lding fa	ıbric		ed to uilding		Lila	01 1110		the system boundary
A1	A2	А3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
Raw materials supply	Transport	Manufacturing	Transport to site	Construction – Installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction demolition	Transport	Waste processing	Disposal	Reuse, Recovery and/or Recycling potential
V	\square	$\overline{\mathbf{A}}$										$\overline{\mathbf{A}}$	$\overline{\mathbf{A}}$	\square	\square	\square

Note: Ticks indicate the Information Modules declared.

Manufacturing site

Arab Steel Co (ASCO) (member of CARES)

2nd Industrial City Dammam Saudi Arabia

Construction Product:

Product Description

Carbon steel feedstock billet (according to product standards listed in Summary, comments and additional information) that is obtained from steel scrap and Direct Reduced Iron (DRI) melted in Electric Arc Furnace (EAF).

Steel feedstock billet is produced for hot rolling to obtain reinforcing steel bars for direct use, or to obtain wire rod to produce other reinforcing steels by further processing, or to obtain other forms of structural steels.

The declared unit is 1 tonne of carbon steel feedstock billets manufactured from secondary material (steel scrap) and direct reduced iron (DRI).

Technical Information

Property	Value, Unit
Production route	EAF
Density	7850 kg/m ³
Recycled content (as per ISO 14021:2016/Amd:2021)	50.7 %

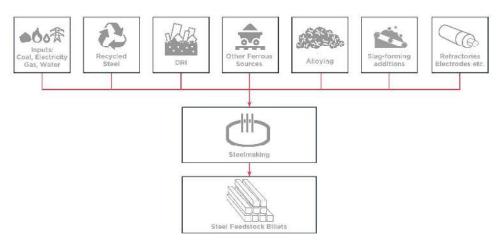
Main Product Contents

Material/Chemical Input	%
Fe	97
C, Mn, Si, V, Ni, Cu, Cr, Mo and others	3

Manufacturing Process

DRI, steel scrap are melted in an Electric Arc Furnace (EAF) to obtain liquid metal. This is then refined to remove impurities and alloying additives can be added to give the required properties of the steel.

Molten steel from the EAF is then cast into steel billets in required dimensions to be used as feedstock for the manufacture of rolled constructional steel products.


Steel billets are hot rolled and shaped to the required dimensions for the finished bars of reinforcing steel bar, coil or rod for the reinforcement of concrete for direct use or wire rod for further processing into other reinforcing standards or other forms of structural steels as used in a built structure.

The carbon steel feedstock billet products may be packaged by binding with steel wire or straps, either of the steel ties and products do not include any biogenic materials.

Process flow diagram

Construction Installation

Processing and proper use of reinforcing steel and structural steel products manufactured from carbon steel feedstock billets depends on the application and should be made in accordance with generally accepted practices, standards and manufacturing recommendations.

During transport and storage of reinforcing steel and structural steel products the usual requirement for securing loads is to be observed.

Use Information

The composition of the reinforcing steel and structural steel products manufactured from carbon steel feedstock billets does not change during use.

Carbon steel reinforcing steel and structural steel products do not cause adverse health effects under normal conditions of use.

No risks to the environment and living organisms are known to result from the mechanical destruction of the reinforcing steel and structural steel product itself.

End of Life

Reinforcing steel and other structural steel products manufactured from carbon steel feedstock billets are not reused at end of life but can be recycled to the same (or higher/lower) quality of steel depending upon the metallurgy and processing of the recycling route.

It is a high value resource, so efforts are made to recycle steel scrap rather than disposing of it at EoL. A recycling rate of 92% is typical for reinforcing steel products

Life Cycle Assessment Calculation Rules

Declared unit description

The declared unit is 1 tonne of carbon steel feedstock billets manufactured from secondary material (steel scrap) and direct reduced iron (DRI) for further processing into steel products for the reinforcement of concrete and into other forms of structural steels as used in a built structure. (i.e. 1 tonne in use, accounting for losses during fabrication and installation, not 1 tonne as produced)

System boundary

The system boundary of the EPD follows the modular design defined by EN 15804+A2. This is a cradle to gate – with options EPD and with options EPD and thus covers modules from A1 to A3, modules from C1 to C4 and module D.

Impacts and aspects related to losses/wastage (i.e. production, transport and waste processing and end-of-life stage of lost waste products and materials) are considered in the modules in which the losses/wastage occur.

Once steel scrap has been collected for recycling it is considered to have reached the end of waste state.

Data sources, quality and allocation

Data Sources: Manufacturing data of the period 01/01/2022-31/12/2022 has been provided by Arab Steel Co (ASCO) (member of CARES).

The selection of the background data for electricity generation is in line with the BRE Global PCR. Country or region specific power grid mixes are selected from GaBi 2021 databases (Sphera 2021); thus, consumption grid mix of Saudi Arabia has been selected to suit specific manufacturing location.

Data Quality: Data quality can be described as good. Background data are consistently sourced from the GaBi 2021 databases (Sphera 2021). The primary data collection was thorough, considering all relevant flows and these data have been verified by CARES.

Data quality level and criteria of the UN Environment Global Guidance on LCA database development:

Geographical Representativeness : Good
Technical Representativeness : Very good
Time Representativeness : Good

Allocation: EAF slag and mill scale are produced as co-products from the steel manufacturing process. Impacts are allocated between the steel, the slag and the mill scale based on economic value. The revenue generated from both mill scale and EAF slag are 0.02% and 0.25% respectively, and their total is less than 1% in relation to the product based on current market prices, these co-products are of definite value and are freely/readily traded in reality. For this reason, economic allocation has been applied to the processes where these co-products arise.

Production losses of steel during the production process are recycled in a closed loop offsetting the requirement for external scrap. Specific information on allocation within the background data is given in the GaBi datasets documentation (/GaBi 6 2021/)

Cut-off criteria

On the input side all flows entering the system and comprising more than 1% in total mass or contributing more than 1% to primary energy consumption are considered. All inputs used as well as all process-specific waste and process emissions were assessed. For this reason, material streams which were below 1% (by mass) were captured as well. In this manner the cut-off criteria according to the BRE guidelines are fulfilled.

The mass of steel wire or strap that may be used for binding the product is less than 1 % of the total mass of the product.

LCA Results

(MND = module not declared; MNR = module not relevant; INA = indicator not assessed; AGG = aggregated)

T dramotoro de	escribing enviro				0)4:5	011:3	055		
			GWP- total	GWP- fossil	GWP- biogenic	GWP- luluc	ODP	AP	EP- freshwate r
			kg CO₂ eq	kg CO₂ eq	kg CO₂ eq	kg CO₂ eq	kg CFC11 eq	mol H⁺ eq	kg (PO ₄)
	Raw material supply	A1	803	802	-0.318	0.429	8.51E-07	2.51	8.28E-04
Donathan takan a	Transport	A2	7.34	7.29	-0.005	0.047	8.93E-16	0.076	1.74E-05
Product stage	Manufacturing	A3	496	495	0.752	0.223	1.50E-12	4.94	2.65E-04
	Total (of product stage)	A1-3	1.31E+03	1.30E+03	0.429	0.699	8.51E-07	7.53	1.11E-03
Construction	Transport	A4	MND	MND	MND	MND	MND	MND	MND
process stage	Construction	A5	MND	MND	MND	MND	MND	MND	MND
	Use	B1	MND	MND	MND	MND	MND	MND	MND
	Maintenance	B2	MND	MND	MND	MND	MND	MND	MND
	Repair	В3	MND	MND	MND	MND	MND	MND	MND
Use stage	Replacement	B4	MND	MND	MND	MND	MND	MND	MND
Ü	Refurbishment	B5	MND	MND	MND	MND	MND	MND	MND
	Operational energy use	В6	MND	MND	MND	MND	MND	MND	MND
	Operational water use	B7	MND	MND	MND	MND	MND	MND	MND
%92 Recycling / %8	3 Landfill Scenario								
	Deconstruction,	C1	2.15	2.15	0.003	4.93E-05	2.48E-16	0.003	4.10E-07
man a serie.	demolition Transport	C2	40.6	40.3	-0.046	0.312	5.10E-15	0.178	1.14E-04
End of life	Waste processing	C3	0	0	0	0	0	0	0
	Disposal	C4	1.18	1.21	-0.035	0.004	4.70E-15	0.009	2.03E-0
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-664	-665	1.160	-0.016	3.11E-12	-1.84	-1.15E-0
100% Lanfill Scena	rio								
	Deconstruction, demolition	C1	2.15	2.15	0.003	4.93E-05	2.48E-16	0.003	4.10E-07
End of life	Transport	C2	1.88	1.86	-0.002	0.015	2.38E-16	0.007	5.53E-06
Lila of lile	Waste processing	C3	0	0	0	0	0	0	0
	Disposal	C4	14.7	15.1	-0.439	0.044	5.87E-14	0.108	2.54E-05
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	1.13E+03	1.13E+03	-1.97	0.027	-5.29E-12	3.12	1.95E-04
100% Recycling Sc	enario								
	Deconstruction, demolition	C1	2.15	2.15	0.003	4.93E-05	2.48E-16	0.003	4.10E-07
End of life	Transport	C2	43.9	43.6	-0.049	0.338	5.53E-15	0.192	1.23E-04
	Waste processing	C3	0	0	0	0	0	0	0
	Disposal	C4	0	0	0	0	0	0	0
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-820	-821	1.43	-0.019	3.84E-12	-2.27	-1.42E-0

GWP-total = Global warming potential, total; GWP-fossil = Global warming potential, fossil; GWP-biogenic = Global warming potential, biogenic; GWP-luluc = Global warming potential, land use and land use change; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential, accumulated exceedance; and EP-freshwater = Eutrophication potential, fraction of nutrients reaching freshwater end compartment

(MND = module not declared; MNR = module not relevant; INA = indicator not assessed; AGG = aggregated)

Parameters of	describing enviro	nmen	tal impac	cts					
			EP- marine	EP- terrestri al	POCP	ADP- mineral &metals	ADP- fossil	WDP	PM
			kg N eq	mol N eq	kg NMVOC eq	kg Sb eq	MJ, net calorific value	m ³ world eq	disease incidend e
	Raw material supply	A1	0.023	6.30	1.680	1.20E-04	1.14E+04	40.5	3.86E-05
	Transport	A2	0.023	0.250	0.057	4.84E-07	95.2	0.052	1.08E-06
Product stage	Manufacturing	A3	0.386	4.21	1.28	3.51E-05	5.43E+03	245	4.47E-0
	Total (of product stage)	A1-3	0.431	10.8	3.02	1.56E-04	1.69E+04	2.86E+0 2	8.44E-0
Construction	Transport	A4	MND	MND	MND	MND	MND	MND	MND
process stage	Construction	A5	MND	MND	MND	MND	MND	MND	MND
	Use	B1	MND	MND	MND	MND	MND	MND	MND
	Maintenance	B2	MND	MND	MND	MND	MND	MND	MND
	Repair	В3	MND	MND	MND	MND	MND	MND	MND
Use stage	Replacement	B4	MND	MND	MND	MND	MND	MND	MND
ŭ	Refurbishment	B5	MND	MND	MND	MND	MND	MND	MND
	Operational energy use	B6	MND	MND	MND	MND	MND	MND	MND
	Operational water use	B7	MND	MND	MND	MND	MND	MND	MND
%92 Recycling / %	%8 Landfill Scenario								
	Deconstruction, demolition	C1	0.001	0.013	0.003	7.01E-08	28.3	0.005	1.89E-0
End of life	Transport	C2	0.085	0.940	0.179	2.97E-06	536	0.334	1.39E-0
Lita of life	Waste processing	C3	0	0	0	0	0	0	0
	Disposal	C4	0.002	0.025	0.007	1.14E-07	16.0	0.130	1.07E-0
Potential benefits and loads beyond the system	Reuse, recovery, recycling potential	D	-0.382	-4.14	-1.28	1.42E-05	- 4.85E+03	13.7	-2.40E-0
100% Lanfill Scer	nario								
	Deconstruction, demolition	C1	0.001	0.013	0.003	7.01E-08	28.3	0.005	1.89E-0
End of life	Transport	C2	0.003	0.035	0.006	1.42E-07	24.8	0.016	3.43E-0
Lita of the	Waste processing	C3	0	0	0	0	0	0	0
	Disposal	C4	0.028	0.307	0.085	1.43E-06	201	1.62	1.34E-0
Potential benefits and loads beyond the system	Reuse, recovery, recycling potential	D	0.649	7.03	2.17	-2.42E-05	8.25E+03	-23.2	4.08E-0
100% Recycling \$	Scenario								
	Deconstruction, demolition	C1	0.001	0.013	0.003	7.01E-08	28.3	0.005	1.89E-0
End of life	Transport	C2	0.092	1.02	0.194	3.22E-06	581	0.362	1.50E-0
	Waste processing	C3	0	0	0	0	0	0	0
	Disposal	C4	0	0	0	0	0	0	0
Potential benefits and loads beyond the system	Reuse, recovery, recycling potential	D	-0.471	-5.11	-1.58	1.76E-05	- 5.99E+03	16.9	-2.97E-0

 $\label{eq:energy} \mbox{EP-marine} = \mbox{Eutrophication potential, fraction of nutrients reaching marine end compartment;}$

EP-terrestrial = Eutrophication potential, accumulated exceedance;

POCP = Formation potential of tropospheric ozone;

ADP-mineral&metals = Abiotic depletion potential for non-fossil resources;

ADP-fossil = Depletion potential of the stratospheric ozone layer; WDP = Water (user) deprivation potential, deprivation-weighted water consumption; and PM = Particulate matter.

(MND = module not declared; MNR = module not relevant; INA = indicator not assessed; AGG = aggregated)

Parameters de	escribing enviro	nmen	tal impacts	S			
			IRP	ETP-fw	HTP-c	HTP-nc	SQP
			kBq U ²³⁵ eq	CTUe	CTUh	CTUh	dimensionless
	Raw material supply	A1	13.9	8.28E-04	8.14E-08	4.92E-06	632
	Transport	A2	0.016	1.74E-05	1.37E-09	7.68E-08	26.3
Product stage	Manufacturing	A3	0.91	2.65E-04	7.44E-08	2.98E-06	347
	Total (of product stage)	A1-3	14.8	1.11E-03	1.57E-07	7.98E-06	1.01E+03
Construction	Transport	A4	MND	MND	MND	MND	MND
process stage	Construction	A5	MND	MND	MND	MND	MND
	Use	B1	MND	MND	MND	MND	MND
	Maintenance	B2	MND	MND	MND	MND	MND
	Repair	В3	MND	MND	MND	MND	MND
Use stage	Replacement	B4	MND	MND	MND	MND	MND
o e	Refurbishment	B5	MND	MND	MND	MND	MND
	Operational energy use	B6	MND	MND	MND	MND	MND
	Operational water use	B7	MND	MND	MND	MND	MND
%92 Recycling / %8	3 Landfill Scenario						
7032 Recycling 7 70	Deconstruction,	0.1	2 2 2 4	4 405 05	5 005 40	4 005 00	0.077
	demolition	C1	0.004	4.10E-07	5.02E-10	1.63E-08	0.077
End of life	Transport	C2	0.092	1.14E-04	7.79E-09	4.56E-07	174
	Waste processing	C3 C4	0.018	0 2.03E-06	0 1.35E-09	0 1.49E-07	3.24
	Disposal	C4	0.016	2.03E-00	1.35E-09	1.49E-07	3.24
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	7.61	-1.15E-04	-1.06E-06	-3.60E-06	397
100% Lanfill Scena	rio						
	Deconstruction, demolition	C1	0.004	4.10E-07	5.02E-10	1.63E-08	0.077
End of life	Transport	C2	0.004	5.53E-06	3.61E-10	2.14E-08	8.51
End of mo	Waste processing	C3	0	0	0	0	0
	Disposal	C4	0.221	2.54E-05	1.69E-08	1.86E-06	40.5
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-12.9	1.95E-04	1.79E-06	6.12E-06	-6.74E+02
100% Recycling Sc	enario						
	Deconstruction, demolition	C1	0.004	4.10E-07	5.02E-10	1.63E-08	0.077
End of life	Transport	C2	0.100	1.23E-04	8.44E-09	4.94E-07	189
	Waste processing	C3	0	0	0	0	0
	Disposal	C4	0	0	0	0	0
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	9.39	-1.42E-04	-1.30E-06	-4.45E-06	490

IRP = Potential human exposure efficiency relative to U235; ETP-fw = Potential comparative toxic unit for ecosystems; HTP-c = Potential comparative toxic unit for humans; HTP-nc = Potential comparative toxic unit for humans; and SQP = Potential soil quality index.

(MND = module not declared; MNR = module not relevant; INA = indicator not assessed; AGG = aggregated)

Parameters (describing resou	rce u	se, primar	y energy				
			PERE	PERM	PERT	PENRE	PENRM	PENRT
			MJ	MJ	MJ	MJ	MJ	MJ
	Raw material supply	A1	460	0	460	1.14E+04	0	1.14E+04
Product stage	Transport	A2	4.33	0	4.33	95.3	0	95.3
	Manufacturing	А3	1.64E+03	0	1.64E+03	5.43E+03	0	5.43E+03
	Total (of product stage)	A1-3	2.10E+03	0	2.10E+03	1.69E+04	0	1.69E+04
Construction	Transport	A4	MND	MND	MND	MND	MND	MND
process stage	Construction	A5	MND	MND	MND	MND	MND	MND
	Use	B1	MND	MND	MND	MND	MND	MND
	Maintenance	B2	MND	MND	MND	MND	MND	MND
	Repair	В3	MND	MND	MND	MND	MND	MND
Use stage	Replacement	B4	MND	MND	MND	MND	MND	MND
Ü	Refurbishment	B5	MND	MND	MND	MND	MND	MND
	Operational energy use	В6	MND	MND	MND	MND	MND	MND
	Operational water use	B7	MND	MND	MND	MND	MND	MND
%92 Recycling / S	%8 Landfill Scenario							
	Deconstruction, demolition	C1	0.098	0	0.098	28.3	0	28.3
End of life	Transport	C2	28.4	0	28.4	537	0	537
Lind of mo	Waste processing	C3	0	0	0	0	0	0
	Disposal	C4	2.16	0	2.16	16.1	0	16.1
Potential benefits and loads beyond the system	Reuse, recovery, recycling potential	D	619	0	619	-4.91E+03	0	-4.91E+03
100% Landfill Sco	enario							
	Deconstruction, demolition	C1	0.098	0	0.098	28.3	0	28.3
End of life	Transport	C2	1.38	0	1.38	24.8	0	24.8
LING OF ING	Waste processing	СЗ	0	0	0	0	0	0
	Disposal	C4	27.0	0	27.0	201	0	201
Potential benefits and loads beyond the system	Reuse, recovery, recycling potential	D	-1.05E+03	0	-1.05E+03	8.34E+03	0	8.34E+03
100% Recycling	Scenario							
	Deconstruction, demolition	C1	0.098	0	0.098	28.3	0	28.3
End of life	Transport	C2	30.7	0	30.7	582	0	582
	Waste processing	СЗ	0	0	0	0	0	0
	Disposal	C4	0	0	0	0	0	0
Potential benefits and loads beyond the system	Reuse, recovery, recycling potential	D	764	0	764	-6.06E+03	0	-6.06E+03

PERE = Use of renewable primary energy excluding renewable primary energy used as raw materials;

PERM = Use of renewable primary energy resources used as raw materials;

PERT = Total use of renewable primary energy resources;

PENRE = Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources used as raw materials;

PENRT = Total use of non-renewable primary energy resource

(MND = module not declared; MNR = module not relevant; INA = indicator not assessed; AGG = aggregated)

Parameters desc	cribing resource u	se, sec	Jonuary Illa	iteriais ariu rueis,	use of water	
			SM	RSF	NRSF	FW
			kg	MJ net calorific value	MJ net calorific value	m ³
	Raw material supply	A1	0	0	0	40.5
	Transport	A2	0	0	0	0.052
Product stage	Manufacturing	A3	-579	0	0	245
	Total (of product stage)	A1-3	-579	0	0	2.86E+02
Construction	Transport	A4	MND	MND	MND	MND
process stage	Construction	A5	MND	MND	MND	MND
	Use	B1	MND	MND	MND	MND
	Maintenance	B2	MND	MND	MND	MND
	Repair	B3	MND	MND	MND	MND
Use stage	Replacement	B4	MND	MND	MND	MND
o o o o congo	Refurbishment	B5	MND	MND	MND	MND
	Operational energy use	B6	MND	MND	MND	MND
	Operational water use	B7	MND	MND	MND	MND
	•	D1	IVIIVD	WIND	IVIIND	WIND
%92 Recycling / %8	Landfill Scenario					
	Deconstruction, demolition	C1	0	0	0	0.005
End of life	Transport	C2	0	0	0	0.334
	Waste processing	C3	0	0	0	0
	Disposal	C4	0	0	0	0.130
Potential benefits and oads beyond the system boundaries	Reuse, recovery, recycling potential	D	-341	0	0	13.7
100% Landfill Scena	rio					
	Deconstruction, demolition	C1	0	0	0	0.005
End of life	Transport	C2	0	0	0	0.016
	Waste processing	C3	0	0	0	0
	Disposal	C4	0	0	0	1.62
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	579	0	0	-23.2
100% Recycling Sce	nario					
	Deconstruction, demolition	C1	0	0	0	0.005
End of life	Transport	C2	0	0	0	0.362
	Waste processing	C3	0	0	0	0
	Disposal	C4	0	0	0	0
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-421	0	0	16.9

SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Net use of fresh water

(MND = module not declared; MNR = module not relevant; INA = indicator not assessed; AGG = aggregated)

			HWD	NHWD	RWD
			kg	kg	kg
Product stage	Raw material supply	A1	9.38E-07	3.90	0.102
	Transport	A2	4.00E-09	0.013	1.13E-04
	Manufacturing	A3	7.07E-07	42.9	0.013
	Total (of product stage)	A1-3	1.65E-06	46.8	0.115
Construction	Transport	A4	MND	MND	MND
process stage	Construction	A5	MND	MND	MND
Use stage	Use	B1	MND	MND	MND
	Maintenance	B2	MND	MND	MND
	Repair	В3	MND	MND	MND
	Replacement	B4	MND	MND	MND
	Refurbishment	B5	MND	MND	MND
	Operational energy use	В6	MND	MND	MND
	Operational water use	B7	MND	MND	MND
%92 Recycling / %8	•				
End of life					
	Deconstruction, demolition	C1	2.42E-10	0.006	3.10E-05
	Transport	C2	2.58E-08	0.078	6.46E-04
	Waste processing	C3	0	0	0
	Disposal	C4	1.70E-09	80.1	1.68E-04
otential benefits and lads beyond the lystem boundaries	Reuse, recovery, recycling potential	D	5.95E-07	-9.62	0.080
100% Landfill Scena	rio				
	Deconstruction, demolition	C1	2.42E-10	0.006	3.10E-05
End of life	Transport	C2	1.25E-09	0.004	3.00E-05
LING OF THE	Waste processing	C3	0	0	0
	Disposal	C4	2.13E-08	1.00E+03	0.002
Potential benefits and pads beyond the system boundaries	Reuse, recovery, recycling potential	D	-1.01E-06	16.4	-0.136
100% Recycling Sce	nario				
	Deconstruction, demolition	C1	2.42E-10	0.006	3.10E-05
End of life	Transport	C2	2.79E-08	0.085	6.99E-04
	Waste processing	C3	0	0	0
	Disposal	C4	0	0	0
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	7.35E-07	-11.9	0.099

HWD = Hazardous waste disposed;

NHWD = Non-hazardous waste disposed;

RWD = Radioactive waste disposed

(MND = module not declared; MNR = module not relevant; INA = indicator not assessed; AGG = aggregated)

	ental information d	COUL	onig outp	at nows –	at ond of			
			CRU	MFR	MER	EE	Biogenic carbon (product)	Biogenic carbon (packaging
			kg	kg	kg	MJ per energy carrier	kg C	kg C
Product stage	Raw material supply	A1	0	0	0	0	0	0
	Transport	A2	0	0	0	0	0	0
	Manufacturing	A3	0	0	0	0	0	0
	Total (of product stage)	A1-3	0	0	0	0	0	0
Construction process stage	Transport	A4	MND	MND	MND	MND	MND	MND
	Construction	A5	MND	MND	MND	MND	MND	MND
	Use	B1	MND	MND	MND	MND	MND	MND
	Maintenance	B2	MND	MND	MND	MND	MND	MND
	Repair	В3	MND	MND	MND	MND	MND	MND
Use stage	Replacement	B4	MND	MND	MND	MND	MND	MND
	Refurbishment	B5	MND	MND	MND	MND	MND	MND
	Operational energy use	В6	MND	MND	MND	MND	MND	MND
	Operational water use	В7	MND	MND	MND	MND	MND	MND
%92 Recycling / %8	· ·							
,	Deconstruction,							
End of life	demolition	C1	0	-920	0	0	0	-920
	Transport	C2	0	0	0	0	0	0
	Waste processing	C3	0		0	0	0	
	Disposal	C4	0	0	0	0	0	0
Potential benefits and pads beyond the system boundaries	Reuse, recovery, recycling potential	D	0	0	0	0	0	0
100% Landfill Scena	rio							
End of life	Deconstruction, demolition	C1	0	0	0	0	0	0
	Transport	C2	0	0	0	0	0	0
	Waste processing	C3	0		0	0	0	
	Disposal	C4	0	0	0	0	0	0
Potential benefits and oads beyond the system boundaries	Reuse, recovery, recycling potential	D	0	0	0	0	0	0
100% Recycling Sce	nario							
End of life	Deconstruction, demolition	C1	0	-1.00E+03	0	0	0	-1.00E+03
	Transport	C2	0	0	0	0	0	0
	Waste processing	СЗ	0		0	0	0	
	Disposal	C4	0	0	0	0	0	0
Potential benefits and oads beyond the system boundaries	Reuse, recovery, recycling potential	D	0	0	0	0	0	0

CRU = Components for reuse; MFR = Materials for recycling MER = Materials for energy recovery; EE = Exported Energy

Scenarios and additional technical information

Scenario	Parameter Units	Re	Results			
	The end-of-life stage starts when the construction product is replaced deconstructed from the building or construction works and does not p function. The recovered steel is transported for recycling while a sma unrecoverable and remains in the rubble which is sent to landfill. 92% assumed to be recycled and 8% is sent to landfill [STEELCONSTRUCTION Once steel scrap is generated through the deconstruction activities of considered to have reached the "end of waste" state. No further processing the processing the state of the processing the processi	rovide any furt Il portion is ass of the reinford CTION.INFO 2 n the demolitio essing is requir	ther sumed to be sing steel in 012]. n site it is red so ther			
C1 to C4 End of life,	Waste for recycling - Recovered steel from crushed concrete	%	92			
	Waste for energy recovery - Energy recovery is not considered for thi study as most end of life steel scrap is recycled, while the remainder landfilled		-			
	Waste for final disposal - Unrecoverable steel lost in crushed concret and sent to landfill	70	8			
	Portion of energy assigned to rebar from energy required to demolish building, per tonne	MJ	24			
	Transport to waste processing by Truck - Fuel consumption	litre/km	1.56			
	Transport to waste processing by Truck – Distance	km	463			
	Transport to waste processing by Truck – Capacity utilisation	%	85			
	Transport to waste processing by Truck – Density of Product	kg/m³	7850			
	Transport to waste processing by Container ship - Fuel consumption		0.004			
	Transport to waste processing by Container ship - Distance	km	158			
	Transport to waste processing by Container ship – Capacity utilisation	า %	50			
	Transport to waste processing by Container ship – Density of Produc	t kg/m ³	7850			
Module D	remainder is landfilled. "Benefits and loads beyond the system boundary" (module D) account for the environmental benefits and loads resulting from net steel scrap that is used as raw material in the EAF and that is collected for recycling at end of life. The balance between total scrap arisings recycled from fabrication, installation and end of life and scrap consumed by the manufacturing process (internally sourced scrap is not included in this calculation). These benefits and loads are calculated by including the burdens of recycling and the benefit of avoided primary production. This study is concerned with using Direct Reduced Iron (DRI) and steel scrap in the EAF in nearly equal proportions. In secondary production route using steel scrap only, more scrap is required as input to the system than is recovered at end of life. In DRI production route only, a large amount of net scrap is generated over the life cycle as the Direct Reduced Iron (DRI) is primarily from virgin sources and there is a high end of life recycling rate for reinforcing steel products. As nearly equal proportions of DRI and steel scrap are used in the production route the net effect is that module D mainly models the credits associated with the scrap output. The resulting scrap credit/burden is calculated based on the global "value of scrap" approach (/worldsteel 2011).					
	Recycled Content	kg	507			
	Re-used Content	kg	0			
	Recovered for recycling	kg	920			
	Recovered for re-use	kg	0			
	Recovered for energy	kg	0			

Summary, comments and additional information

Interpretation

Direct Reduced Iron and steel scrap based reinforcing steel product of Arab Steel Co (ASCO) (member of CARES) is made via the EAF route. The bulk of the environmental impacts and primary energy demand is attributed to the manufacturing phase, covered by information modules A1-A3 of EN 15804+A2.

The interpretation of the results has been carried out considering the methodology- and data-related assumptions and limitations declared in the EPD. This interpretation section focuses on the environmental impact categories as well as the primary energy demand indicators only.

References

BSI. Sustainability of construction works – Environmental product declarations – Core rules for the product category of construction products. BS EN 15804:2012+A2:2019. London, BSI, 2019.

BSI. Environmental labels and declarations – Type III Environmental declarations – Principles and procedures. BS EN ISO 14025:2010 (exactly identical to ISO 14025:2006). London, BSI, 2010.

BSI. Environmental management – Life cycle assessment – Principles and framework. BS EN ISO BS EN ISO 14040:2006+A1:2020. London, BSI, 2020.

BSI. Environmental management – Life cycle assessment – requirements and guidelines. BS EN ISO 14044:2006+A2:2020. London, BSI, 2020.

Demolition Energy Analysis of Office Building Structural Systems, Athena Sustainable Materials Institute, 1997

Sphera Solutions GmbH; GaBi Software System and Database for Life Cycle Engineering, Sphera Solution GmbH, Leinfelden-Echterdingen, 2021.

GaBi 10, Content Version 2021.2: Documentation of GaBi 10, Content Version 2021.2: Software-System and Database for Life Cycle Engineering. Copyright, TM. Stuttgart, Echterdingen, 2021. (http://documentation.gabi-software.com/)

International Energy Agency, Energy Statistics 2013. http://www.iea.org

Kreißig, J. und J. Kümmel (1999): Baustoff-Ökobilanzen. Wirkungsabschätzung und Auswertung in der Steine-Erden-Industrie. Hrsg. Bundesverband Baustoffe Steine + Erden e.V.

U.S. Geological Survey, Mineral Commodity Summaries, Iron and Steel Slag, January 2014

SteelConstruction.info; The recycling and reuse survey, 2012 http://www.steelconstruction.info/The recycling and reuse survey

Sustainability of construction works - Environmental product declarations - Methodology for selection and use of generic data; German version CEN/TR 15941

REGULATION (EU) No 305/2011 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 9 March 2011 laying down harmonised conditions for the marketing of construction products and repealing Council Directive 89/106/EEC.

BS 4449:2005+A3:2016 Steel for the reinforcement of concrete. Weldable reinforcing steel. Bar, coil and decoiled product. Specification.

ASTM A615/A615M – 22 - Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement.

ASTM A706/A706M – 22 - Standard Specification for Deformed and Plain Low-Alloy Steel Bars for Concrete Reinforcement.

ASTM A510/A510M – 20 - Standard Specification for General Requirements for Wire Rods and Coarse Round Wire, Carbon Steel, and Alloy Steel

ISO 6935-2:2019 - Steel for the reinforcement of concrete - Part 2: Ribbed bars.

EN 10025-1:2004 - Hot Rolled Products of Structural Steels - Part 1: General Technical Delivery Conditions

EN 10025-2:2019 - Hot Rolled Products of Structural Steels - Part 2: Technical Delivery Conditions for Non-alloy Structural Steels

ASTM A36 / A36M - 19 Standard Specification for Carbon Structural Steel

ASTM A1040-17(2022) Standard Guide for Specifying Harmonized Standard Grade Compositions for Wrought Carbon, Low-Alloy, and Alloy Steels

ASTM A510/A510M-20 Standard Specification for General Requirements for Wire Rods and Coarse Round Wire, Carbon Steel, and Alloy Steel

ASTM A1064/A1064M-22 Standard Specification for Carbon-Steel Wire and Welded Wire Reinforcement, Plain and Deformed, for Concrete